Energy Dissipation in Turbulence

Ali Pakzad

University of Pittsburgh

Numerical Analysis and Predictability of Fluid Motion May 4, 2016

Kolmogorov: Predicting turbulence statistics correctly requires predicting energy dissipation rate correctly.

Introduction

The Smagorinsky model (SM)

$$u_t + u \cdot \nabla u - \nu \Delta u + \nabla p - \nabla \cdot ((C_s \delta)^2 |\nabla u| \nabla u) = f(x)$$
 in Ω ,
 $\nabla \cdot u = 0$ in Ω .

Time-averaged Energy Dissipation rate

$$\langle \varepsilon(u) \rangle = \limsup_{T \to \infty} \frac{1}{T} \int_0^T (\frac{1}{|\Omega|} \int_{\Omega} \nu |\nabla u|^2 + (c_s \delta)^2 |\nabla u|^3 dx) dt.$$

- SM over-dissipates.
- Does SM with Damping functions over-dissipate ?

NSE vs SM

Figure: NSE, eddies are shed and roll down channel

Figure: SM, flow reaches equilibrium quickly!

History and Motivation

- Boussinesq 1877; Turbulent fluctuations are dissipative in the mean.
- $\langle \varepsilon(u) \rangle \simeq \frac{U^3}{L}$.
- Doering and Constantin 1992; in NSE for Shear flow.

$$\langle \varepsilon(u) \rangle \leq C \frac{U^3}{L}.$$

Layton 2002; SM for Shear flow over dissipates

$$\langle \varepsilon_s(u) \rangle \simeq [1 + C_s^2 (\frac{\delta}{L})^2 (1 + \mathcal{R}e)^2] \frac{U^3}{L}.$$

Layton 2016; SM with under periodic B.C

$$\langle \varepsilon(u) \rangle \simeq \frac{U^3}{I}.$$

Practical Solutions

In practice, model refinements aim at reducing model dissipation by

- Structural sensors,
- Dynamic parameter selection,
- Accentuation technique, and
- Damping functions.

van Driest Damping function

- $(C_s \delta)^2 |\nabla u|$; large near the walls \Rightarrow over-dissipation.
- Van Driest; $C_s = C_s(x) \to 0$ as $x \to wall$.
- ullet Numerical simulation; SM + van Driest performs better.

Smagorinsky + Damping function

Let $\Omega = [0, L]^3$. Find (u, p) satisfying

$$u_t + u \cdot \nabla u - \nu \Delta u + \nabla p - \nabla \cdot (\beta(x)(C_s \delta)^2 | \nabla u | \nabla u) = 0,$$
 (1)

$$\nabla \cdot u = 0.$$

Boundary conditions

- Periodic boundary conditions in the x and y directions,
- $u(x, y, 0, t) = (0, 0, 0)^{\top}$ and $u(x, y, L, t) = (U, 0, 0)^{\top}$. (2)

Results

Theorem

Let $\beta(x,y,z):[0,L]^3\longrightarrow \mathbb{R}$ to be $\beta(x,y,z)=(\frac{z}{L})^{\alpha}(1-\frac{z}{L})^{\alpha}$, then for equation (1) and the boundary conditions (2) with $\alpha\geq 2$, we have

$$\langle \varepsilon(u) \rangle \leq C_1 \frac{U^3}{L} + C_2 (\frac{C_s \delta}{L})^2 \frac{U^3}{L},$$

where C_1 and C_2 are positive and independent of viscosity.

 The estimate is consistent with phenomenology and the rate proven for NSE.

Current Work

- Energy dissipation of discrete model in a fixed grid.
- Fluctuating shear velocity.

